If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2+15c-3=0
a = 3; b = 15; c = -3;
Δ = b2-4ac
Δ = 152-4·3·(-3)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{29}}{2*3}=\frac{-15-3\sqrt{29}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{29}}{2*3}=\frac{-15+3\sqrt{29}}{6} $
| 0.25*8x-12=0.20*20x+40 | | 8(9x+17)=41 | | v+3.1=5.55 | | z+3.42=7.2 | | (u+7)^2+56=6 | | 0.88=0.2/x | | x/100*250=390 | | 3+4=-5x-18 | | 0.4x-3/1.5x+9=7/5 | | 2/5+z=1 | | 8b-3-5b=24 | | X+2x+2x+6=100 | | 65=85+3n-16-n | | 75x=900 | | 4-7=8i=3(i+1-i | | -8-2x/8=-6 | | 9m-4=77 | | F(x)=3x+19 | | 8a+5=69 | | 2.4x=34.2 | | 5b+15=70 | | -7+x=-350 | | 2x+2x+5=100 | | 22x+20=360 | | 3=-5/8+u | | 6e+8-3=107 | | x-10=4x+17 | | x-10=5x+17 | | 3x+9=-141 | | 12x+25+73=180 | | -13=s-6 | | 1.3x=60 |